
PHYSICAL REVIEW A 103, 032602 (2021)

Highly photon-loss-tolerant quantum computing using hybrid qubits
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We investigate a scheme for topological quantum computing using optical hybrid qubits and make an extensive
comparison with previous all-optical schemes. We show that the photon loss threshold reported by Omkar et al.
[Phys. Rev. Lett. 125, 060501 (2020)] can be improved further by employing postselection and multi-Bell-
state-measurement-based entangling operations to create a special cluster state, known as Raussendorf lattice
for topological quantum computation. In particular, the photon loss threshold is enhanced up to 5.7 × 10−3,
which is the highest reported value given a reasonable error model. This improvement is obtained at the price of
consuming more resources by an order of magnitude compared with the scheme in the aforementioned reference.
Nevertheless, this scheme remains resource-efficient compared with other known optical schemes for fault-
tolerant quantum computation.
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I. INTRODUCTION

The quantum optical platforms have not only the advan-
tage of supplying quicker gate operations compared with the
decoherence time [1] but also relatively efficient readouts,
which makes them suitable platforms and one of the strongest
contenders for realizing scalable quantum computation (QC).
However, with these platforms, photon loss is ubiquitous
which leads to optical qubit loss and is also a major source
of noise, i.e., dephasing or depolarizing [1], also known as
the computational errors. Noise stands as the major obstacle
in the path towards scalable QC. To overcome the effects of
noise, we need fault-tolerant schemes that employ quantum
error correction (QEC) [2,3]. QEC promises the possibility to
realize a scalable QC with faulty qubits, gates, and readouts
(measurements), provided the noise level is below a certain
threshold. This threshold value is determined according to the
details of the fault-tolerant (FT) architecture and the associ-
ated noise model. Moreover, QEC has also been employed
in quantum metrology [4,5] and communication [6–8]. Ref-
erences [9–11] show that QEC codes can also be used for
efficiently characterizing quantum dynamical maps that could
be either completely positive or not [12,13].

Fault-tolerant schemes implemented with various kinds of
optical qubits provide different ranges of tolerance against
both qubit loss and computational errors. The parameters that
determine the performance of a fault-tolerant optical scheme
are (i) photon loss and computational error thresholds and (ii)
their operational values, (iii) logical error rate and (iv) re-
sources incurred per logical gate operation. Logical error rate
is the rate of failure of QEC that results in a residual error at
the highest logical level of encoding [2,3]. From the threshold
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theorem [2,14], we know that, when the fault-tolerant optical
hardware operates below the noise threshold, the logical error
rate can be made arbitrarily close to zero by allocating more
resources. Thus, operational values of the noise, i.e., photon
loss and computational error rates too, are important parame-
ters because they determine the required resource to attain the
target logical error rate.

It has recently been demonstrated that, by using optical
hybrid qubits entangled in the continuous-discrete optical do-
main, many shortcomings faced individually by continuous
variable (CV) and discrete variable (DV) qubits can be over-
come in linear optical quantum computing [15,16]. In fact, the
fault-tolerant quantum computation (FTQC) schemes based
on either DV or CV qubits not only tend to have low thresh-
olds and operational values for photon loss and computational
error, but they also require extravagant resources to provide
arbitrarily small logical error rates. In order to overcome
these limitations, the scheme in Ref. [15] uses optical hybrid
qubits that combine single-photon qubits [17] together with
the coherent-state qubits [18–22] that are a particular type of
CV qubits with coherent states. While this scheme offers an
improvement in resource efficiency, both the threshold and
operational values of the noise remain low as it employs CSS
(Calderbank-Shor-Steane) QEC codes [23–25]. Our recent
proposal for topological FTQC [16] employing special cluster
states of optical hybrid qubits, also known as a Raussendorf
lattice (|CL〉), exhibits an improvement in both operational
and threshold values of photon loss and computational error
by an order of magnitude. This hybrid-qubit-based topological
FTQC (HTQC) scheme also offers the best resource effi-
ciency.

HTQC uses linear optics, optical hybrid states, and Bell-
state measurement (BSM) as entangling operations (EOs)
to create a |CL〉. Interestingly, HTQC does not involve
postselection, and active switching is hence unnecessary. Fur-
thermore, there is no need for in-line feed-forward operations.
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Therefore, HTQC is ballistic in nature. In this work we show
that, by employing postselection over the successful EOs and
using multi-BSM EOs (see Fig. 4) at a certain stage of creation
of |CL〉, the photon-loss threshold, ηth can be further im-
proved. We shall also show that this improvement costs more
resources than the HTQC, but only by an order of magnitude.

The rest of the article is organized as follows: In Sec. II, we
briefly explain the preliminaries of measurement-based fault-
tolerant topological QC on a |CL〉. Readers familiar with the
topic can skip this section. In Sec. III we describe our scheme
that employs postselection and multi-BSM-based EOs to build
|CL〉 using hybrid qubits. Furthermore, in Sec. IV, we detail
the generation of star cluster states used as building-blocks for
|CL〉. In Sec. V, we describe the noise model used and simula-
tion procedure of QEC is outlined in Sec. VI. In Sec. VII, we
present our results on the improved photon loss thresholds,
and the details about resource estimation is provided in the
Sec. VIII. In Sec. IX, we compare the various performance pa-
rameters of our scheme with those of other schemes for optical
FTQC. Finally, the discussion and conclusion are presented in
Sec. X.

II. PRELIMINARIES

In this section we briefly review the measurement-based
fault-tolerant topological QC on |CL〉. For this purpose, we
first define what the cluster states are in general and describe
measurement-based FTQC on them. As an alternative to the
circuit-based model for QC, Raussendorf and Briegel [26] de-
veloped a model where a universal set of gates can be realized
using only adaptive single-qubit measurements in different
bases on a multiqubit entangled state known as cluster state.
In general, a cluster state |C〉 over a collection of qubits C
is a state stabilized by the operators Xa

⊗
b∈nh(a) Zb, where

a, b ∈ C, Zi and Xi are the Pauli operators on the ith qubit,
and nh(a) denotes the adjacent neighborhood of qubit a ∈ C.
A multiqubit |C〉 has the form

|C〉 =
∏

b∈nh(a)

CZa,b|+〉a|+〉b ∀ a ∈ C, (1)

where |±〉 = (|0〉 ± |1〉)/
√

2 is the eigenstate of X , while
|0〉, |1〉 are those of Z . CZa,b, an EO, applies Z on the target
qubit b if the source qubit a is in the state |1〉. The unit
cell shown in Fig. 1(a) is an example of a cluster state. This
measurement-based QC model is not fault tolerant by nature
and, in order to achieve robustness against noise, the clus-
ter qubits were encoded into five-qubit QEC codes [27] and
Steane QEC codes [28].

Another route to fault tolerance is to recognize that certain
cluster states correspond to topological QEC codes. Surface
codes, a class of topological QEC codes on two-dimensional
(2D) cluster states are known to provide a high error threshold
of ≈1% [29] against computational errors. It is known that
surfaces codes can tolerate neither qubit-loss nor EO failures,
and thus are not suitable for optical platforms [30,31]. The
shortcomings of surface codes can be overcome by using a
|CL〉 for topological QEC. For a review on the topic refer
to Refs. [32–34]. Topological QEC on |CL〉 [35] is known
to provide a high error threshold of 0.75% [36,37] against

FIG. 1. (a) A unit cell that makes up the lattice |CL〉. The qubits
in red (larger) on the faces of the unit cell correspond to the primal
lattice and the others in blue (smaller) correspond to the dual lattice.
The black (thick) lines represent the presence of entanglement be-
tween the qubits. (b) A string of phase-flip errors will have detection
events (red cells) only at the endpoints.

computational errors that occur during preparation, storage,
gate application, and measurement. In addition, |CL〉 can tol-
erate qubit loss [33,38] and missing edges [39] due to failed
EOs, making it suitable for linear optical platforms.

A. Error detection and correction

The lattice |CL〉 can be thought of as a lattice formed by
unit-cell arrangement as shown in the Fig. 1(a). This lattice
has qubits mounted on its faces and edges [35]. For QEC and
QC, it is important to recognize that |CL〉 is formed by two
interlocking types of lattices, namely, the primal and dual lat-
tices. The dual lattice is a result of mapping the face qubits of
the primal lattice to edge qubits and vice versa. From Eq. (1),
it is clear that each face of a unit cell is stabilized by Xi

⊗
b Zb

where Xi denotes the X operator on the ith face of the unit cell
and Zb denotes the Z operators on the boundary of the face.
A stabilizer of a unit cell associated with the primal lattice is
given by the product of six constituent face stabilizers, i.e.,
Sp = X1X2X3X4X5X6. To measure Sp, one needs to perform
single-qubit measurements in the X basis and multiply the
individual outcomes. When there is no phase-flip error on an
odd number of qubits, the measurement outcome would be
sp = +1.

As the Z operator on an odd number of face qubits an-
ticommute with the Sp, the stabilizer measurement outcome
would be sp = −1. On the other hand, an even number of
phase-flips go undetected because they commute with Sp and
have sp = +1. Therefore, when sp = −1, one can only detect
but not locate the errors. An error can be detected and located
on |CL〉 by measuring Sp of the adjacent cubes as shown in
Fig. 1(b). Multiple errors on the adjacent cells form an error
chain in |CL〉 that can be detected at its endpoints with the
value sp = −1, as shown in Fig. 1(b). However, this only
reveals the existence of an error chain, but does not locate
every error. Thus, one would need to guess the most likely
error chain and apply appropriate corrections. This guess can
be carried out by using the efficient minimum weight perfect
matching algorithm (MWPM) [40]. MWPM can make wrong
guesses and may lead to logical errors discussed in the sub-
sequent section. We note that the bit-flip errors on |CL〉 have
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FIG. 2. (a) The qubit on the common face of adjacent cells is
considered to be lost. Stabilizers of the two adjacent cells can be
multiplied to form a larger cell, which removes the dependency
on the measurement outcome of the shared qubit. This feature is
employed to deal with qubit loss of unit cells where the larger cell
can perform error detection that is not possible by incomplete unit
cells. (b) Two unit cells forming a distance d = 3 code is shown.
Both errors (bigger yellow ball) on a single qubit and two qubits
(smaller red balls) cause the same detection events indicated by red
cell. Because the single-error case has smaller weight, the MWPM
always chooses it even if the errors occurred on two qubits. When
the error inference is wrong, making error corrections by applying Z
on the larger qubit will complete the error chain connecting the two
boundaries, causing a logical error.

trivial effect and thus only the phase flips are of concern in
this QEC scheme.

To detect errors on qubits other than those on the faces, we
invoke the concept of the dual lattice where the edge qubits in
the primal lattice are now the face qubits. One can construct a
unit cell and stabilizer Sd on the dual lattice and carry out QEC
just like the procedures on the primal lattice. It is important to
note that QEC on both type of lattices proceeds independently.

Handling qubit losses. When the qubits in the lattice are
lost, it becomes impossible to measure the stabilizers Sp or
Sd and detect the errors. To circumvent this issue, one can
form a larger stabilizer by multiplying the two adjacent-cell
stabilizers such that the lost qubit is shared between them.
This eliminates the dependency of the stabilizer on the lost
qubit, as shown in Fig. 2(a). The resultant stabilizer with
10X operators can perform error detection just like a regular
stabilizer of a unit cell. If there are a chain of losses, the same
procedure can be extended to form larger cells that can replace
unit cells [38].

B. Logical operations and logical errors

A few chosen qubits are measured in the Z basis to create
defects that initialize the logical states on the |CL〉. This re-
moves the qubits from the lattice and disentangles the qubits
inside the measured region from the rest of the lattice. De-
pending on the chosen lattice type, the logical qubits would
either be of primal or dual types. Logical operations on the
logical states correspond to a chain of Z operators that ei-
ther encircles a defect or connects two defects of the same
type [35,36]. Equivalently, in the absence of defects, a logical

error happens when boundaries of the same the type are con-
nected by a chain of Z operators.

The code distance d is defined as the minimum num-
ber of Z operations required to change the logical state of
|CL〉. Errors on the logical states can also be introduced
due to the wrong inference by the MWPM during QEC.
An error chain of length (d + 1)/2 or longer can lead to
such wrong inferences. For example, consider two cells as
shown in the Fig. 2(b), forming a distance d = 3 code where
both the single-qubit error (bigger ball) and the two-qubit
error (smaller balls) cause the same detection events. As the
single-error case has smaller weight, the MWPM preferen-
tially chooses it even when errors have actually occurred on
the other two qubits. In this case, performing error correction
by applying a single Z (on the larger qubit) will connect the
two boundaries, causing a logical error.

C. Universal gates

Once a faulty |CL〉 with missing qubits and phase-flip
errors is available, topological FTQC is carried out by making
sequential single-qubit measurements in the X and Z bases as
dictated by the quantum algorithm being implemented. These
defects are braided to achieve two-qubit logical operations
topologically [35,36]. The lattice qubits are measured in the
X basis, the outcomes of which not only provide error syn-
dromes but also effect Clifford gates on the logical states. It
is to be noted that not only tolerance against qubit losses but
also two-qubit logical operations become available by mov-
ing from surface codes to 3D cluster-based QEC codes. The
universal set of operations for QC is complete with inclusion
of magic-state distillation for which measurements on the
chosen qubits are carried out in the (X ± Y )/

√
2 basis [35,36].

III. RAUSSENDORF LATTICE WITH POSTSELECTION
AND MULTI-BELL-STATE-MEASUREMENT

ENTANGLING OPERATION

In this work, similarly to HTQC, a |CL〉 is created with
optical hybrid qubits of the form

|�α〉 = (|α〉|H〉 + | − α〉|V〉)/
√

2, (2)

where |H〉, |V〉 are the discrete orthonormal polarization eigen-
kets of Z , and {|α〉|H〉, | − α〉|V〉} forms the computational
basis for hybrid qubits where α is assumed to be real without
loss of generality. However, here we add two extra features;
postselection and the multi-BSM EO to improve ηth over
HTQC. Employing postselection (choosing the states condi-
tioned on specific measurement outcomes) on the successful
BSMs at a certain stage of the current scheme will avoid
the formation of undesired diagonal edges [refer to Fig. 2(c)
of Ref. [16]] and thus resulting in a better |CL〉. Employing
the multi-BSM EOs will reduce the value of α required to
build |CL〉. We demonstrate in Sec. V that the use of larger
α invites larger dephasing on the hybrid qubits in the pres-
ence of photon loss. Therefore, using hybrid qubits of smaller
values of α would improve the performance against photon
loss as dephasing is mitigated. We show that adding these two
features in building |CL〉 will lead to an improved ηth over
HTQC. Henceforth, we shall refer to BSM on hybrid qubits as
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FIG. 3. Bα acts on the CV modes and fails when neither of the
two PNPDs click. Its failure rate on the hybrid qubits is e−2α2

[15].
BS acts on the DV modes and is successful with probability 1/2 only
when both the PDs click. A HBSM fails only when both Bα and BS

fail. Thus the failure rate of a HBSM is e−2α2
/2.

hybrid BSM (HBSM) and the setup is as shown in Fig. 3. For
brevity, we coin this scheme as hybrid-qubit-based topological
QC with postselection and n-HBSM EO (PHTQC-n). In prin-
ciple, we can have n subvariants of the scheme. However, we
shall consider only two in this work, namely, PHTQC-2 and
PHTQC-3 because those with n � 3 may not offer resource
efficiency over the similar DV-qubit-based schemes [41].

In PHTQC-n, implementing |CL〉 commences with the
creation of a 4n-arm star cluster state |C∗〉4n, where n =
1, 2, 3, . . . . The state represented by |C∗〉4n has a central qubit
and 4n number of surrounding arm qubits. The arm qubits
are entangled with the central qubit and are represented by
the edges, as shown in Fig. 4. Furthermore, the cluster state
|CL〉 is formed by entangling the central qubits of multiple
|C∗〉4n. This EO or creation of edges between the central qubits
is achieved by performing multiple HBSMs to which n-arm
qubits of each |C∗〉4n are inputs, as shown in Fig. 4. Thus,
only the central qubit of |C∗〉4n stays in |CL〉. It is important to
note that we perform up to n HBSMs in a sequence until one
succeeds or all are exhausted.

A. Hybrid Bell-state measurement

HBSM is a composite of two BSM operations: BS and Bα

acting on DV and CV parts of a hybrid qubit, respectively,
as shown in Fig. 3. The failure rate of HBSM drastically
approaches to zero with an increasing value of α [15,16].
The measurement Bα comprises a beam splitter (BS) and
two photon-number parity detectors (PNPDs), whereas Bs has
a polarizing beam splitter (PBS), two photodetectors (PDs).
A Bα is successful when one of the two PNPDs clicks and
is a failure when both do not click. A successful Bα can
have four possible outcomes (combination of PNPD clicks)
which corresponds to a projection onto the Bell states, |ψ±〉 =
|α, α〉 ± | − α,−α〉, |φ±〉 = |α,−α〉 ± | − α, α〉 (up to nor-
malization). A Bs succeeds only when both PDs click, and
all other cases are deemed to be failure. For more details on

FIG. 4. A 4n-arm star cluster state |C∗〉4n has a central qubit and
4n number of surrounding arm qubits. The arm qubits are entangled
with the central qubit via edges. An edge between the two central
qubits is created by performing multiple HBSMs to which n arm
qubits of each |C∗〉4n are inputs, as shown. In the process, the HBSMs
are performed in a sequence until one of them succeeds or all the n-
arm qubits are exhausted. This will boost the success rate of the edge
creation. Even though the BSMs in linear optics are probabilistic,
using multi-HBSM EOs make the edge creation near-deterministic.
A multi-HBSM EO fails when all the n constituent HBSMs fail. If
pf is the failure rate of HBSM, the success rate of multi-HBSM EO
is 1 − pn

f . Thus, a |CL〉 is built by entangling the |C∗〉4n with their
four nearest neighbors.

HBSM refer to Refs. [15,16]. Given that the CV and DV parts
of hybrid qubits are correlated, HBSM succeeds even when
one of Bα and Bs is successful or both of them are successful.
A HBSM fails only when both the constituent modules Bα

and Bs fail. More precisely, the failure rate of Bα at which
no click is registered on the PNPDs is e−2α2

and that of Bs at
which only one detector or none clicks is 1/2 [16]. Thus, the
failure rate of HBSM turns out to be e−2α2

/2. It is important
to note that a HBSM failure is heralded so that the knowledge
is available for decoding during postselection, multi-HBSM
EOs and QEC.

B. Postselection

Star cluster states |C∗〉4n are generated by performing HB-
SMs on the three-hybrid-qubit cluster states (see Sec. IV for
details). Note that HBSMs are not deterministic and there
are instances of failure. Importantly, failure of a HBSM on
three-hybrid-qubit cluster states leads to |C∗〉4n with missing
edges between the central qubit and arm qubits, and also
misplaced edges between the arm qubits [refer to Fig. 1(b) of
Ref. [16]]. These missing and misplaced edges in turn lower
the fault tolerance of |CL〉 [16]. Therefore, discarding such
distorted star cluster states becomes crucial for improving the
performance parameters. For this we employ postselection,
i.e., states are fed to the next stage of star-cluster construction
conditioned on all HBSMs being successful. In this way, we
can have intact |C∗〉4n (as in Fig. 4) available for forming |CL〉.
In optics, postselection over the successful HBSMs can be re-
alized by using optical delay lines and switching circuits [41].

C. Multi-hybrid Bell-state measurement
entanglement operators

As BSMs are not deterministic in linear optics, failures
of EOs leave the corresponding edges between the qubits of
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|CL〉 missing. This problem of missing edges can be addressed
by transforming them to missing qubits of |CL〉 [39]. Then,
topological QEC is carried out as detailed in Sec. II. When the
missing fraction of the lattice qubits is 0.249 or more, |CL〉
cannot support FTQC [42]. In Ref. [16], HTQC overcomes
this problem by using hybrid qubits on which BSM is near-
deterministic due to larger value of α. Thus, having only four
arms in the star cluster (|C∗〉4) suffices. But, smaller values of
α would be appreciable for a better ηth (see Sec. V). Alter-
natively, when the BSM is probabilistic, Refs. [39,41,43,44]
tackle the problem by having multi-BSM EOs to improve
the success rate of edge creation. Similarly, in PHTQC-n we
employ n-HBSM EOs so that we can afford smaller values of
α and still have edge creation near-deterministically. Suppose
that p f is the failure rate of an individual HBSM in n-HBSM
EO. This EO would fail only if all the constituent HBSMs
fail. Therefore, the success rate of the n-HBSM EO is 1 − pn

f ,

where p f is e−2α2
/2 when there is no photon loss. Under

photon loss, p f is substituted by Eq. (8). The smaller the
value of α, the larger n should be to make the n-HBSM EO
near-deterministic.

In this n-HBSM EO stage, HBSMs are performed sequen-
tially until one succeeds or all n arm qubits are exhausted,
as shown in Fig. 4. With this strategy the incurred resources,
in terms of both qubits and BSM trials, grow exponentially
as the success rate of BSM falls. Moreover, once a HBSM
is successful, all other arm qubits must be removed using
Z measurements [43] because an even number of successful
HBSMs correspond to removal of the edge. Additionally, one
must employ optical delay lines and a switching circuit for
sequencing the multiple BSMs. Switching is also known to be
a major contributor for photon loss [41]. However, if the suc-
cess rate of the BSM is high, the complexity of the switching
circuit, and hence the photon loss, can be reduced. In this work
we study in detail how PHTQC-n performs against photon
loss in spite of the apparent former disadvantage.

D. Measurements on hybrid qubits of |CL〉
The measurements on the hybrid qubits of |CL〉 for

topological FTQC can be achieved in two ways; either by
measuring the DV or CV modes. Measurements on the DV
mode are accomplished by detecting the polarization of the
photons in their respective basis. For CV modes, X mea-
surements can be achieved by detections on PNPDs, and Z
measurements by homodyne detection in the displacement
quadrature [22]. Measurements in the (X ± Y )/

√
2 basis can

be achieved by using the displacement operation in photon
counting [45] of the CV modes. However, measurements on
the DV modes alone are sufficient for carrying out PHTQC-n.

E. In-line and off-line processes

The process of building |CL〉 consists of two stages: of-
fline and inline stages. During the offline stage, two types of
three-hybrid-qubit cluster states are generated using |�α〉 in
Eq. (2) as raw resources [16]. This offline process involves
EOs that are probabilistic in nature (see supplemental material
of Ref. [16] for details). Failure of an EO would result in a
missing edge in these states. To feed intact three-hybrid-qubit

FIG. 5. An unfilled circle represents a qubit on which the
Hadamard gate is applied. The three-hybrid-qubit offline resource
state with an unfilled circle represents |C3〉 while that with two the
|C3′ 〉 [refer to text below Eq. (3)]. Success of both HBSMs create
a four-arm star-cluster state |C∗〉 and other cases lead to undesired
states, as shown in Fig. 1(b) of Ref. [16]. In this work, we postselect
on both HBSMs being successful and other cases are discarded.

cluster states to the next stage we need to postselect on the suc-
cessful EOs. Once there is a continuous supply of the offline
resource states (three-hybrid-qubit cluster states), the inline
stage commences by creating copies of |C∗〉4n and entangling
them to form lattice qubits and edges. Using 4n − 2 HBSMs
on 4n − 1 offline resource states, |C∗〉4n can be generated by
postselecting on all successful HBSMs. For example, |C∗〉4
can be generated by using two HBSMs on the off-line resource
states, as shown in Fig. 5. Furthermore, |C∗〉8 can be generated
using two |C∗〉4 and a three-hybrid qubit cluster state, and two
HBSMs as shown in Fig. 6; a total of six HBSMs are required.

IV. GENERATION OF STAR CLUSTER STATE

First, we describe in detail how to create |C∗〉4 using offline
resource states and HBSMs. This procedure is similar to that
in HTQC but involves postselection. Subsequently, we show
how to extend the procedure to create |C∗〉8 and, more gener-
ally, to create |C∗〉4n with n > 2.

A |C∗〉4 is created by using two kinds of offline resource
states and two HBSMs, as shown in Fig. 5. The two offline
resource states have the form

|C3〉 = 1

2
(|α, α, α〉|H, H, H〉 + |α, α,−α〉|H, H, V〉

+ |− α,−α, α〉|V, V, H〉− | − α,−α,−α〉|V, V, V〉),

|C3′ 〉 = 1√
2

(|α, α, α〉|H, H, H〉 + | − α,−α,−α〉|V, V, V〉).

(3)

FIG. 6. (a) An eight-arm start cluster state |C∗〉 can be created
by entangling two four-arm |C∗〉 and a three-qubit-cluster state |C3′ 〉
with two HBSMs. Postselection is employed to obtain intact states.
Furthermore, copies of eight-arm |C∗〉 are entangled to form a |CL〉.
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One can verify that |C3〉 is the result of a Hadamard
on the first qubit of the three-qubit linear cluster state
CZ2,1CZ2,3|+〉1|+〉2|+〉3. On the other hand, |C3′ 〉 is due to
a Hadamard on the first and third qubits of this three-qubit
linear cluster state.

It is important to note that the hybrid-qubit-based scheme
facilitates the generation of three-qubit cluster states us-
ing only linear optics with practical values of α. Although
coherent superposition states, |α〉 ± | − α〉 (up to normal-
ization) also support near-deterministic BSM, by using only
linear optics it is not possible to generate high-fidelity
three-qubit cluster states like 1√

2
(|α, α, α〉 + |α, α,−α〉 +

| − α,−α, α〉 − | − α,−α,−α〉) with practical values of α.
For example, the scheme in Ref. [22] needs α ≈ 10 for a
fidelity of ≈0.9, which is very low for QEC on |CL〉. For
building a |CL〉 suitable for topological FTQC, one needs

initial coherent superposition states of very large α [22].
Moreover, when α is large, dephasing in the presence of pho-
ton loss is very strong on the qubits of |CL〉, resulting in failure
of QEC. As such, nonlinear optical schemes like a cavity
QED generation scheme [46] are necessary to build a suitable
cluster state under those situations. On the other hand, we
demonstrate that, by using hybrid qubits of amplitude α < 1,
it is possible to build a sufficiently good |CL〉 for topological
FTQC.

As shown in Fig. 5, two |C3〉 and a |C3′ 〉 are initialized
as |C3〉1,2,3 ⊗ |C3′ 〉4,5,6 ⊗ |C3〉7,8,9, where |C3/3′ 〉i, j,k represents
the ith, jth, and kth hybrid qubits in the assembly of the cluster
states. We perform HBSMs on the hybrid qubits 2, 4 and 6, 8.
Out of many possibilities of HBSMs being successful, sup-
pose that they are successful with Bα projecting onto |ψ+〉.
Then the resulting state of the remaining hybrid qubits 1, 3, 5,
7, and 9 would be

|C∗〉4 = |α, α, α, α, α〉1,3,5,7,9|H, H, H, H, H〉1,3,5,7,9 + |α, α, α, α,−α〉1,3,5,7,9|H, H, H, H, V〉1,3,5,7,9

+ |α,−α, α, α, α〉1,3,5,7,9|H, V, H, H, H〉1,3,5,7,9 + |α,−α, α, α,−α〉1,3,5,7,9|H, V, H, H, V〉1,3,5,7,9

+ | − α, α,−α,−α, α〉1,3,5,7,9|V, H, V, V, H〉1,3,5,7,9 − | − α, α,−α,−α,−α〉1,3,5,7,9|V, H, V, V, V〉1,3,5,7,9

− | − α,−α,−α,−α, α〉1,3,5,7,9|V, V, V, V, H〉1,3,5,7,9 + | − α,−α,−α,−α,−α〉1,3,5,7,9|V, V, V, V, V〉1,3,5,7,9. (4)

When the HBSMs are successful with other possibili-
ties of projecting onto different states, the resulting |C∗〉4
would be equivalent to the one in Eq. (4) up to lo-
cal Pauli rotations. This can be handled by updating the
Pauli frame without the need for any feed-forward optical
operations.

A desired |C∗〉4 with edges connecting the central qubit to
all the arm qubits is generated only when both HBSMs are
successful. In other cases, that is when one of the HBSMs fails
or both, the resulting states are distorted with edges misplaced
between surrounding qubits [refer to Fig. 1(b) of Ref. [16] ].
To see this, suppose that the HBSM acting on modes 2 and 4
of the initialized state |C3〉1,2,3 ⊗ |C3′ 〉4,5,6 ⊗ |C3〉7,8,9 fails and
the other succeeds. The resulting state is

(|α, α〉1,3|H, H〉1,3 + |α,−α〉1,3|H, V〉1,3

+ | − α, α〉1,3|V, H〉1,3

+ | − α,−α〉1,3|V, V〉1,3) ⊗ |C3〉5,7,8. (5)

We observe that there are no edges (no entanglement) from
the central qubit (mode 5) to qubits 1 and 3. Rather, there
is a misplaced edge between qubits 1 and 3. We refer to
this misplaced edges as diagonal edges due to its geometric
appearance [see Fig. 1(b) of Ref. [16]]. This leads to distortion
of the lattice geometry and stabilizer structure. Each failure
of HBSM results in two missing edges and an undesired
diagonal edge in a |C∗〉4. Contrary to Ref. [16], which utilizes
distorted star cluster states, here we postselect states on all
HBSMs being successful. Due to postselection we are able to
choose |C∗〉4 in Eq. (4) which has intact edges and discard the
distorted states like that in Eq. (5). Therefore, the resulting
|CL〉 would be free of diagonal edges. Avoiding diagonal
edges leads to a lower number of missing lattice edges and

in turn to many fewer missing qubits. Therefore, using posts-
election results in a better |CL〉 and a better tolerance against
dephasing.

Star cluster state with more than four-arm qubits. Increas-
ing the number of arms provides an opportunity to repeat the
HBSM operations when the previous ones fail. The bottleneck
here is that, as the number of arms goes up, the success rate
of HBSMs fall (as α correspondingly decreases) and there is a
growing complexity in the switching circuit for postselection.
It is also known that switching adds to photon loss, which
would be detrimental for ηth. For those reasons, we restrict
ourselves to utilizing only |C∗〉8 and |C∗〉12.

A |C∗〉8 can be created by entangling two |C∗〉4 and a |C3′ 〉
with two HBSMs, as described in Fig. 6, where postselection
is carried out over the successful HBSMs. Similar to the case
of |C〉4, one can explicitly work out and show that the process
in Fig. 6 would result in |C∗〉8. By the same token, one can
generate |C∗〉12 by entangling |C∗〉8, |C∗〉4, and |C3′ 〉 with two
HBSMs.

After building |CL〉 using |C∗〉4n with postselection, both
QEC and gate operations on the topological states of the lat-
tice are executed by measuring the hybrid qubits individually.
The measurements, in principle, transfers the state on a layer
to the next in a similar manner as in teleportation. In practice,
two layers of |CL〉 suffice at any instant. The third-dimension
of |CL〉 is a happening in time [35].

V. NOISE MODEL

The predominant errors in optical quantum computing
models originate from photon loss [1]. In this section, we
study the effect of the photon loss on hybrid qubits and in turn
on PHTQC-n. The action of the photon-loss channel E on a
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hybrid qubits initialized to the state ρ0 = |�α〉〈�α| gives [15]

E(ρ0) = (1 − η)

2
(|α′, H〉〈α′, H| + | − α′, V〉〈−α′, V|

+ e−2ηα2
(|α′, H〉〈−α′, V| + | − α′, V〉〈α′, H|))

+ η

2
[(|α′〉〈α′| + | − α′〉〈−α′|) ⊗ |0〉〈0|],

= (1 − η)

(
1 + e−2ηα2

2
|�+

α′ 〉〈�+
α′ |

+ 1 − e−2ηα2

2
|�−

α′ 〉〈�−
α′ |

)

+ η

2
(|�+

α′ 〉〈�+
α′ | + |�−

α′ 〉〈�−
α′ |), (6)

where |�±
α′ 〉 = (|α′, H〉 ± | − α′, V〉)/

√
2, |�±

α′ 〉 = |0〉 ⊗
(|α′〉 ± | − α′〉)/

√
2, and α′ = √

1 − ηα with η being the
photon-loss rate that arises from imperfect sources and
detectors, absorptive optical components, and storage.
The effect of photon loss on hybrid-qubits is to introduce
phase-flip errors Z and diminishes the amplitude α to α′,
which consequently lowers the success rate of HBSMs.
Its also forces the hybrid qubit state to leak out of the
computational basis {|0〉L, |1〉L}.

From Eq. (6) one can deduce that the dephasing rate is

pz = (1 − η)
1 − e−2ηα2

2
+ η

2
= 1

2
[1 − (1 − η)e−2ηα2

],

(7)
which increases with the value of α for a given η. Thus, for a
fixed value of η, we face a trade-off between the desirable suc-
cess rate of HBSM and the detrimental effects of dephasing
with increasing value of α. Owing to photon loss, the failure
rate of a HBSM reads

p f = 1
2 (1 − η)e−2α′2 + ηe−2α′2 = 1

2 (1 + η)e−2α′2
. (8)

In the above equation, the first term originates from the at-
tenuation of the CV part, while the second from both CV
attenuation and DV loss. We point out that, like DV optical
schemes [44], photon loss does not necessarily imply lattice-
qubit loss in PHTQC-n. The probability 〈0, 0|E(ρ0)|0, 0〉 =
ηe−α′2

that photon loss leading to lattice-qubit loss for η ∼
10−3 is much smaller than the HBSM failure rate p f and can
be neglected.

VI. SIMULATION OF QUANTUM ERROR CORRECTION

To simulate QEC on the |CL〉 of hybrid-qubits with miss-
ing edges and dephasing noise, we use the software package
AUTOTUNE [47]. It offers a wide range of options for noise
models and their customization to suit our scheme. Most im-
portantly, it allows for the simulation of QCE when the qubits
are missing. We obtain results by exploiting this feature via
mapping missing edges to missing qubits [48].

AUTOTUNE uses the circuit model (where qubits are initial-
ized in the |+〉 state and CZ operations are applied to create
entanglement between the appropriate qubits) to simulate the
error propagation during the formation of |CL〉. Here, we
detail how noise in PHTQC-n (which employs techniques
different from the circuit model for building |CL〉) can be

simulated using AUTOTUNE. As explained in Sec. III, only
the central hybrid qubit of |C∗〉4n remains in the lattice and
the arm qubits are utilized by the HBSMs. All the hybrid
qubits of |C∗〉4n suffer from dephasing of rate pZ in Eq. (7)
due to photon loss. The action of HBSMs transfer noise on
the arm qubits to the central qubits [16]. Thus, the central
qubits accumulate additional noise due to the HBSMs. The
role of a HBSM in creating edges between the central qubits
of |C∗〉4n is equivalent to that of a CZ in the circuit model
for building |CL〉. So, the action of HBSMs under noise in
PHTQC can be simulated by noisy CZs in AUTOTUNE. Once
a noisy |CL〉 is simulated, the QEC proceeds the same way
for both pictures. AUTOTUNE also allows for the simulation of
noise introduced during the initialization of qubits that mimics
a noisy |C∗〉4n and subsequent error propagation through the
action of HBSMs. Other operations in AUTOTUNE that are not
relevant to us are set to be noiseless.

More specifically, noise from a HBSMs is simulated as
noise introduced by a CZ described by the Kraus operators
{√(1 − 2pZ )I ⊗ I,

√
pZZ ⊗ I,

√
pZ I ⊗ Z} [16]. In PHTQC-

n, HBSMs act up to n times to create an edge between two
central qubits. The rate of dephasing added by n HBSMs
on the central qubits is 1 − (1 − pZ )n. In the limit pZ � 1,
this amounts to npZ . Accordingly, the noise corresponding
to n HBSMs would have the following Kraus operators:
{√(1 − 2npZ )I ⊗ I,

√
npZ Z ⊗ I,

√
npZ I ⊗ Z}. However, it

is not necessary to perform all n HBSMs available in PHTQC-
n. When one of the available n succeeds, we stop performing
HBSMs. The second HBSM is performed with probability
1 − p f when the first one fails, and so on. Therefore, the
average number of HBSMs needed to create an edge is

navg =
n−1∑
m=0

(1 − p f )pm
f (m + 1)

= 1 − (n + 1)pn
f + p f

1 − p f
(1 − p f )n

≈ 1 + p f

≈ 1

1 − p f
for p f � 1. (9)

Thus, in PHTQC-n, a noisy entangling operation is de-
scribed by the set of Kraus operators: {√(1 − 2navg pZ )I ⊗
I,

√
navg pZ Z ⊗ I,

√
navg pZ I ⊗ Z}. As navg < n for small p f ,

this strategy of stopping the HBSM process after one succeeds
will help in reducing the dephasing noise due to HBSMs. This
description also accounts for dephasing in the switching pro-
cess. AUTOTUNE also allows us to simulate instances when no
gate actions happen, but qubits suffer loss and dephasing. We
assume that the postselection takes place in this instance. This
allows us to account for photon loss and dephasing during the
switching process in the simulation.

Furthermore, the QEC simulation on a faulty |CL〉 begins
by making X -basis measurements on the noisy hybrid qubits.
We again introduce dephasing of rate pZ on the hybrid qubits
waiting to undergo measurement. The X -measurement out-
comes used for syndrome extraction during QEC could be
erroneous. This error rate is also set to pZ . Due to photon
loss, the hybrid qubits may leak out of the logical basis which
makes measurements on such DV modes impossible. This
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FIG. 7. Logical error rate pL is plotted against the dephasing
rate pZ for PHTQC-2 and PHTQC-3 of code distances d = 5, 7, 9.
The intersecting point of these curves corresponds to the threshold
dephasing rate pZ,th. The plots correspond to the qubit loss rate
ploss = 0.03.

leakage error too is assigned the same rate of pZ . As pZ > η,
the assignment will only overestimates the leakage error of
rate η.

VII. RESULTS FOR PHOTON LOSS THRESHOLD

The logical error rate pL is determined against the value
of pZ for |CL〉 of code distances d using AUTOTUNE. This
calculation is repeated for various values of lattice-qubit loss
rate ploss, which correspond to different values of α. The
intersection point of the curves corresponding to various d
is the threshold dephasing rate pZ,th as marked in Fig. 7.
The photon-loss threshold ηth is determined using Eq. (7) by
replacing pZ with pZ,th.

From Fig. 3(b) of Ref. [16], we estimate that PHTQC-n
would also perform best around ploss = 0.03 because both
schemes use the same error model. Thus, we simulate the
QEC for both PHTQC-2 and PHTQC-3 with ploss = 0.03. To
determine the values of α required for PHTQC-n, we map ploss

to p f as detailed in the following.
Each qubit in |C〉L is associated with four edges created by

n-HBSM. When all HBSMs fail the edge between the lattice
qubits will be missing. In this scenario, either of the qubits
is removed with equal probability thereby mapping a missing
edge to a missing qubit [48]. In PHTQC-n, the probability of
having a missing edge is pn

f . A qubit is removed when more
than one of the associated edges is missing, giving us

ploss = 1 −
(

1 − 1

2
pn

f

)4

. (10)

After inserting the values of ploss and n into Eq. (10),
we find that PHTQC-2 and PHTQC-3 require α of 0.84 and
0.6, respectively. From the simulation result for PHTQC-2,
as shown in Fig. 7(a), we have pZ,th = 0.006, which trans-
lates to ηth = 5 × 10−3 with the aid of Eq. (7). Similarly,
from Fig. 7(b) we have pZ,th = 0.0049, which results in
ηth = 5.7 × 10−3 for PHTQC-3. These results imply that the
PHTQC-2 and PHTQC-3 schemes provide improved values
of ηth over HTQC. Compared with other known optical QC

FIG. 8. To achieve fault tolerance for gate operations, both the
circumference of a defect and distance between two defects should
be d . So, the defects are placed in the cubic lattice of side l = 5d/4 as
shown such that distance between the defects is d . Thus on average,
a cubic lattice of volume (5d/4)3 is required per fault tolerant gate
operation.

schemes [15,21,44,49–52], we find that PHTQC-3 provides
the highest ηth (when the computational error rate is nonzero).

VIII. RESULTS ON RESOURCE OVERHEAD

To estimate the resource overhead per fault-tolerant topo-
logical gate operation, we count the average number of hybrid
qubits N required to build a cubic fraction of the |C〉L of
sufficiently large side l determined by the target pL. As de-
picted in Fig. 8, l is determined such that the cubic fraction
can accommodate a defect of circumference d so that there
are no error chains encircling it. Also, the defect is separated
by a distance d [33] from those in neighboring cubic fractions
to avoid a chain of errors connecting them. For this, the side of
the cubic fraction must be at least l = 5d/4. By extrapolating
the suppression of pL with d , we determine the value of d
required to achieve the target pL ≈ 10−15 using the following
expression [33] (see also Fig. 7):

pL = b(
a
b

) d−db
2

, (11)

where a and b are the values of pL corresponding to the second
highest and the highest code distances da and db, respectively,
chosen for our simulations. We determine a and b below half
the threshold value, that is pZ,th/2. Once d is determined, N
can be estimated as detailed in the subsequent section. We
emphasize that N also depends upon the value of the η at
which FTQC schemes operate, that is closer to threshold they
operate, more resources are consumed.
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TABLE I. The table lists various fault-tolerant optical QC schemes, the associated QEC codes, type of optical resource used, the optimal
photon loss threshold ηth they provide and incurred resource overhead N . The resource overhead N to attain the logical error rate pL ∼
10−6(10−15) is calculated for operational values of the photon loss rate η and computational error rate. It should be noted that ηth claimed by
OCQC, PLOQC, EDQC, and TPQC (in italic) are valid only for zero computational errors, which is unrealistic since photon losses would
cause computational errors. It is clear that PHTQC-3 offer highest η and computational error rate by an order of magnitude compared with
other known optical QC schemes along with the best resource efficiency. Note that, in PHTQC-n with an n > 3 value of failure rate of HBSM,
pf is comparable to that in DV scheme [41] and the usage of hybrid qubits offers no advantage in significantly reducing N . We hence only
provide results up to n = 3.

Scheme QEC Code ηth η, computational error rate Resource N for pL = 10−6 N for pL = 10−15

OCQC 7-qubit Steane code 4×10−3 4×10−4, 4 × 10−5 Bell pair 2.6×1019 7.1×1024

PLOQC 7-qubit Steane code 2×10−3 4×10−4, 4 × 10−5 Bell pair 6.8×1014 3.5×1019

EDQC Error detecting codes 1.57×10−3 1×10−4, 1 × 10−5 Bell pair O(1013) O(1016)
CSQC 7-qubit Steane code 2.3×10−4 8×10−5, 1.97 × 10−5 CSS qubits 2.1×1011 6.9×1015

MQQC 7-qubit Steane code 1.7×10−3 O(10−4), O(10−4) Bell pair 2.7×1014 1.4×1019

HQQC 7-qubit Steane code 4.6×10−4 O(10−4), O(10−4) Hybrid qubits 8.2×109 2.3×1012

TPQC Topological 5.3×10−4 0, 1×10−3 (5.3 × 10−4, 0) Entangled photons >2×109 >4.2×1010

HTQC Topological 3.3×10−3 1.5×10−3, 3 × 10−3 Hybrid qubits 8.5×105 1.7×107

PHTQC-2 Topological 5×10−3 2.4×10−3, 3 × 10−3 Hybrid qubits 1.1×106 1.8×107

PHTQC-3 Topological 5.7×10−3 2.6×10−3, 2.3 × 10−3 Hybrid qubits 2.9×107 4.9×108

Resource overhead for PHTQC-n

Let us recall that two |C3〉, a |C3′ 〉 and two HBSMs are
needed to create |C∗〉4. The success rate of both HBSMs is
(1 − 1

2 e−2α′2
)2. On average, 8/[(1 − e−2α′2

)2] hybrid qubits
are needed to create a |C3〉 or |C3′ 〉. Taking postselection
into account, the average number of hybrid qubits in building
|C∗〉4 would be 24/[(1 − e−2α′2

)2(1 − 1
2 e−2α′2

)2]. In general, a
|C∗〉4n can be created by entangling a |C∗〉4n−4, a |C∗〉4 and a
|C3′ 〉 using two HBSMs. A |C∗〉4n−4 in turn requires 4n − 6
HBSMs, while |C∗〉4 needs two HBSMs. Therefore, a total of
4n − 2 HBSMs are used in creating |C∗〉4n, which is formed
from n |C∗〉4 and n − 1 |C3′ 〉. On average, one needs[

24n

(1 − e−2α′2 )2 + 8(n − 1)

(1 − e−2α′2 )2

]
1(

1 − 1
2 e−2α′2)4n−2

hybrid qubits to synthesize |C∗〉4n.
As mentioned in Sec. III, each |C∗〉4n appears as a single

qubit in the final lattice |CL〉. This means the number of |C∗〉4n
needed to build a lattice of side l is 6l3. Finally, the average
number of hybrid qubits needed for building |CL〉 of side l =
5d/4 in PHTQC-n is

Nn =
[

32n − 8

(1 − e−2α′2 )2

]
125d3

64
(
1 − 1

2 e−2α′2)4n−2 , (12)

which is more than that for HTQC.
For PHTQC-2, the value of amplitude of hybrid qubits is

set to α = 0.84 so that ploss = 0.03 and then pL is determined
against dephasing. From the simulation result in Fig. 7(a) we
have pL corresponding to |CL〉 of distance da = 7 to be a ≈
1.2 × 10−3 and that corresponding to db = 9 is b ≈ 2 × 10−4.
Using these values in Eq. (11), we estimate that |CL〉 of d ≈
15 (39) is needed to achieve pL ∼ 10−6 (10−15). Using these
values of α and d in the Eq. (12), we estimate that N2 ≈ 1.1 ×
106 (1.8 × 107) hybrid qubits are incurred in PHTQC-2.

Similarly, for PHTQC-3, we set α = 0.6 such that ploss =
0.03 and then pL is determined against dephasing. From

Fig. 7(b) we have a ≈ 8.5 × 10−3 when da = 7 and b ≈
1.7 × 10−4 when db = 9. As in the previous case, using
these values we estimate that |CL〉 of d ≈ 16 (41) is needed
to achieve pL ≈ 10−6 (10−15). Thus PHTQC-3 incurs N3 ≈
2.9 × 107 (4.9 × 108) hybrid qubits.

IX. COMPARISON

We briefly present the known linear optical FTQC schemes
based on DV, CV and hybrid platforms and compare their
performance parameters (tabulated in Table I) with those of
PHTQC-n.

Reference [49] is one of the earliest works that determines
the threshold region of η and computational error rate and per-
forms resource estimation for linear optical QC. The scheme
uses optical cluster states [26] for FTQC (which we abbreviate
as OCQC), built using entangled polarization photon pairs.
This scheme uses CSS QEC codes [2] coupled with telecorre-
tion, where teleportation is used for error-syndrome extraction
for fault tolerance. OCQC uses concatenation of QEC codes
to attain low values of pL. For example, 6 (4) levels of error
correction were employed to attain pL ∼ 10−15 (10−6). Un-
fortunately, resource overhead N demanded by OCQC (see
Table I) is too high for practical purposes and subsequent
studies aimed to reduce it.

Later, Ref. [50] used error-detecting quantum state transfer
(EDQC) for optical FTQC. The underlying codes were ca-
pable of detecting errors in a way similar to the scheme in
Ref. [53], where QEC is shown to be possible by concate-
nating different error-detecting codes. EDQC offers a smaller
ηth, but the value of N could be reduced by many orders of
magnitude compared with OCQC (refer to Table I). Another
scheme, namely, the parity state linear optical QC (PLOQC)
scheme [51] that encodes multiple photons into a logical qubit
in parity state, provides a smaller ηth, but an improved re-
source efficiency compared with OCQC. This scheme, similar
to OCQC, uses CSS QEC codes and telecorrection. There
also exists the multiphoton qubit QC (MQQC) scheme [52]
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that uses telecorrection based on CSS QEC code. See
Table I for the parameters of performance of MQQC. Similar
to OCQC, schemes EDQC, PLOQC, and MQQC need few
levels of concatenation of QEC codes to attain target pL (refer
to supplemental material of Ref. [16] for details). Using DV
optical platform a topological photonic QC (TPQC) scheme
was proposed [44]. In Ref. [44], photonic topological QC
(TPQC) scheme operating on a DV optical platform was pro-
posed. Here, FTQC is performed on |CL〉 built from a stream
of entangled polarization photons. The value of N for TPQC
is calculated either for η = 0 or zero computational error rate
(only those cases are considered in the Ref. [44]). When both
the parameters are nonzero, N would in principle be much
larger.

The coherent-state quantum computation (CSQC) [19–21]
uses the following set of coherent states {|α〉, | − α〉} as the
logical basis for CV qubits. CSQC also executes telecor-
rection for tolerance against photon loss and computational
errors [21]. In this CV scheme, superpositions of superpo-
sition states, |α〉 ± | − α〉 (up to normalization) [54,55], are
considered as resources. This reduces N by many orders of
magnitude compared with OCQC, but at the cost of a lower
ηth. As seen from Table I, the ηth is smaller by an order of
magnitude than OCQC.

A hybrid-qubit-based QC (HQQC) [15] scheme uses op-
tical hybrid states instead of coherent superposition states.
HQQC offers a better value of ηth and resource scaling than
CSQC. If different kinds of hybrid qubits [56] are employed
for telecorrection, one would speculate a better resilience
against photon loss in HQQC. In linear optical FTQC, the
recent HTQC [16] offers the best ηth and resource efficiency
known to date. However, PHTQC-2 and PHTQC-3 lead to
even better ηth than HTQC at the cost of incurring slightly
more resources. Nevertheless, the new schemes remain re-
source efficient, in marked contrast with all other linear optical
schemes for FTQC.

We stress caution by noting that, in OCQC, PLOQC,
EDQC, and TPQC, the two noise parameters η and the compu-
tational error rate are independent. However, these parameters
are interdependent in HTQC, PHTQC, CSQC, HQQC, and
MBQC. Moreover, in the former schemes, the computational
error is depolarizing in nature whereas in the latter schemes,
it is a result of dephasing caused by photon loss. It is im-
portant to note ηth claimed by OCQC, PLOQC, EDQC, and
TPQC are valid only for zero computational errors, which is
unrealistic since photon losses typically cause computational
errors.

X. DISCUSSION AND CONCLUSION

In pushing hybrid qubit quantum computing to the limit,
we establish postselection schemes for the creation of star
cluster states and utilize multiple hybrid Bell-state measure-
ments per edge creation to build a Raussendorf lattice for
fault-tolerant quantum computation. Compared to a recently
published hybrid qubit scheme [16], we show that our current
hybrid scheme with postselection can achieve an even higher
photon-loss threshold. In particular, we achieve the thresh-
old values of 5 × 10−3 and 5.7 × 10−3 with two respective
subvariants of the scheme, namely, PHTQC-2 and PHTQC-3

introduced in this work. They represent an approximately 50%
improvement compared with the previous scheme without
postselection (3.3 × 10−3) [16].

This enhancement comes from the desirable fact that the
hybrid-qubit scheme with postselection can have a high suc-
cess rate of entangling operations without the need to use
hybrid qubits of large coherent amplitudes. Consequently, the
current scheme benefits from weaker dephasing effects arising
from photon loss. We also show that a larger photon loss
threshold comes at a nominal increase in resource overhead of
about one order of magnitude in comparison with that for the
hybrid qubit scheme without postselection. In terms of hard-
ware design, this additionally requires switching circuits to
support postselection and multiple hybrid Bell-state measure-
ments. Therefore, the ballistic character of the previous hybrid
qubit scheme is sacrificed in exchange for higher photon-loss
tolerance.

From these findings, we now confirm that all hybrid-qubit
schemes permit significantly higher operational photon loss
and computational error rates, by an order of magnitude com-
pared with other optical schemes [15,21,44,49–52]. Although
the optical-cluster scheme [49] provides a slightly larger
photon-loss threshold compared with the previous ballistic
hybrid-qubit scheme [16], we have shown that our current
scheme can provide an even larger threshold values. We also
demonstrate an overall superiority in resource efficiency of
our current scheme. If the failure rate of hybrid Bell-state
measurements is large, postselection of higher intensity is
required and would render its performance comparable to dis-
crete variable schemes. Eventually, using hybrid qubits offers
no resource advantage over the discrete variable scheme in
Ref. [41].

In hindsight, since using smaller coherent amplitudes
in postselection hybrid schemes boosts photon-loss thresh-
olds, it naturally supports the logic that a Raussendorf
lattice built with only discrete-variable qubits could offer an
even higher photon loss threshold, albeit at higher resource
costs.

Proposals to generate optical hybrid states, without cross-
Kerr nonlinearity, using only linear optical elements and
photon detectors, were made in Refs. [57–60]. Sophisticated
manipulations of time-bin and wave-like degrees of freedom
have also opened interesting routes to generating such en-
tangled states [61–67]. These achievements pave the way to
practical hybrid qubit quantum computing.
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